Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes.

نویسندگان

  • Yeon Joo Jeong
  • Mohammad F Islam
چکیده

Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL(-1), which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ∼7 mg mL(-1) (volume fraction ∼0.005) followed by coatings of SWCNT networks with 6-8 mg mL(-1) of h-BN (volume fraction ∼0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ∼100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doping finite-length carbon and boron nitride nanotubes with aluminium atom: A thermodynamic semiempirical investigation

The doping reaction of truncated boron nitride and carbon nanotubes with aluminium atom wastheoretically investigated. The AM1, PM3, and PM6 semiempirical methods have been used toevaluate the thermochemistry of doping reactions of single walled boron nitride nanotubes andcarbon nanotubes. The enthalpy changes, Gibbs free energy changes, and entropy changes of studieddoping reactions were evalu...

متن کامل

Carbon Nanotube Thermal Pastes for Improving Thermal Contacts

The use of 0.6 vol.% single-walled carbon nanotubes in a poly(ethylene glycol)based dispersion gave a thermal paste that was as effective as solder for improving thermal contacts. A thermal contact conductance of 20 · 10 W m K was attained. An excessive amount of nanotubes (e.g. 1.8 vol.%) degraded the performance, because of conformability loss. The nanotubes were more effective than hexagonal...

متن کامل

Ab initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.

A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully the geometries of the systems. The generalized gradient approximation is used for the exchange-correlation functional. We find that the pristine single-walle...

متن کامل

Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes

In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 30  شماره 

صفحات  -

تاریخ انتشار 2015